📊
linux-insides
  • README
  • Summary
    • Booting
      • From bootloader to kernel
      • First steps in the kernel setup code
      • Video mode initialization and transition to protected mode
      • Transition to 64-bit mode
      • Kernel decompression
      • Kernel load address randomization
    • Initialization
      • First steps in the kernel
      • Early interrupts handler
      • Last preparations before the kernel entry point
      • Kernel entry point
      • Continue architecture-specific boot-time initializations
      • Architecture-specific initializations, again...
      • End of the architecture-specific initializations, almost...
      • Scheduler initialization
      • RCU initialization
      • End of initialization
    • Interrupts
      • Introduction
      • Start to dive into interrupts
      • Interrupt handlers
      • Initialization of non-early interrupt gates
      • Implementation of some exception handlers
      • Handling Non-Maskable interrupts
      • Dive into external hardware interrupts
      • Initialization of external hardware interrupts structures
      • Softirq, Tasklets and Workqueues
      • Last part
    • System calls
      • Introduction to system calls
      • How the Linux kernel handles a system call
      • vsyscall and vDSO
      • How the Linux kernel runs a program
      • Implementation of the open system call
      • Limits on resources in Linux
    • Timers and time management
      • Introduction
      • Clocksource framework
      • The tick broadcast framework and dyntick
      • Introduction to timers
      • Clockevents framework
      • x86 related clock sources
      • Time related system calls
    • Synchronization primitives
      • Introduction to spinlocks
      • Queued spinlocks
      • Semaphores
      • Mutex
      • Reader/Writer semaphores
      • SeqLock
      • RCU
      • Lockdep
    • Memory management
      • Memblock
      • Fixmaps and ioremap
      • kmemcheck
    • Cgroups
      • Introduction to Control Groups
    • SMP
    • Concepts
      • Per-CPU variables
      • Cpumasks
      • The initcall mechanism
      • Notification Chains
    • Data Structures in the Linux Kernel
      • Doubly linked list
      • Radix tree
      • Bit arrays
    • Theory
      • Paging
      • Elf64
      • Inline assembly
      • CPUID
      • MSR
    • Initial ram disk
    • Misc
      • Linux kernel development
      • How the kernel is compiled
      • Linkers
      • Program startup process in userspace
      • Write and Submit your first Linux kernel Patch
      • Data types in the kernel
    • KernelStructures
      • IDT
    • Useful links
    • Contributors
Powered by GitBook
On this page

Was this helpful?

  1. Summary

KernelStructures

PreviousProgram startup process in userspaceNextIDT

Last updated 5 years ago

Was this helpful?

This is not usual chapter of linux-insides. As you may understand from the title, it mostly describes internal system structures of the Linux kernel. Like Interrupt Descriptor Table, Global Descriptor Table and many many more.

Most of information is taken from official and manuals.

Intel
AMD