Introduction to system calls
Introduction
This post opens up a new chapter in linux-insides book, and as you may understand from the title, this chapter will be devoted to the System call concept in the Linux kernel. The choice of topic for this chapter is not accidental. In the previous chapter we saw interrupts and interrupt handling. The concept of system calls is very similar to that of interrupts. This is because the most common way to implement system calls is as software interrupts. We will see many different aspects that are related to the system call concept. For example, we will learn what's happening when a system call occurs from userspace. We will see an implementation of a couple system call handlers in the Linux kernel, VDSO and vsyscall concepts and many many more.
Before we dive into Linux system call implementation, it is good to know some theory about system calls. Let's do it in the following paragraph.
System call. What is it?
A system call is just a userspace request of a kernel service. Yes, the operating system kernel provides many services. When your program wants to write to or read from a file, start to listen for connections on a socket, delete or create directory, or even to finish its work, a program uses a system call. In other words, a system call is just a C kernel space function that user space programs call to handle some request.
The Linux kernel provides a set of these functions and each architecture provides its own set. For example: the x86_64 provides 322 system calls and the x86 provides 358 different system calls. Ok, a system call is just a function. Let's look on a simple Hello world
example that's written in the assembly programming language:
We can compile the above with the following commands:
and run it as follows:
Ok, what do we see here? This simple code represents Hello world
assembly program for the Linux x86_64
architecture. We can see two sections here:
.data
.text
The first section - .data
stores initialized data of our program (Hello world
string and its length in our case). The second section - .text
contains the code of our program. We can split the code of our program into two parts: first part will be before the first syscall
instruction and the second part will be between first and second syscall
instructions. First of all what does the syscall
instruction do in our code and generally? As we can read in the 64-ia-32-architectures-software-developer-vol-2b-manual:
To summarize, the syscall
instruction jumps to the address stored in the MSR_LSTAR
Model specific register (Long system target address register). The kernel is responsible for providing its own custom function for handling syscalls as well as writing the address of this handler function to the MSR_LSTAR
register upon system startup. The custom function is entry_SYSCALL_64
, which is defined in arch/x86/entry/entry_64.S. The address of this syscall handling function is written to the MSR_LSTAR
register during startup in arch/x86/kernel/cpu/common.c.
So, the syscall
instruction invokes a handler of a given system call. But how does it know which handler to call? Actually it gets this information from the general purpose registers. As you can see in the system call table, each system call has a unique number. In our example the first system call is write
, which writes data to the given file. Let's look in the system call table and try to find the write
system call. As we can see, the write system call has number 1
. We pass the number of this system call through the rax
register in our example. The next general purpose registers: %rdi
, %rsi
, and %rdx
take the three parameters of the write
syscall. In our case, they are:
File descriptor (
1
is stdout in our case)Pointer to our string
Size of data
Yes, you heard right. Parameters for a system call. As I already wrote above, a system call is a just C
function in the kernel space. In our case first system call is write. This system call defined in the fs/read_write.c source code file and looks like:
Or in other words:
Don't worry about the SYSCALL_DEFINE3
macro for now, we'll come back to it.
The second part of our example is the same, but we call another system call. In this case we call the exit system call. This system call gets only one parameter:
Return value
and handles the way our program exits. We can pass the program name of our program to the strace util and we will see our system calls:
In the first line of the strace
output, we can see the execve system call that executes our program, and the second and third are system calls that we have used in our program: write
and exit
. Note that we pass the parameter through the general purpose registers in our example. The order of the registers is not accidental. The order of the registers is defined by the following agreement - x86-64 calling conventions. This, and the other agreement for the x86_64
architecture are explained in the special document - System V Application Binary Interface. PDF. In a general way, argument(s) of a function are placed either in registers or pushed on the stack. The right order is:
rdi
rsi
rdx
rcx
r8
r9
for the first six parameters of a function. If a function has more than six arguments, the remaining parameters will be placed on the stack.
We do not use system calls in our code directly, but our program uses them when we want to print something, check access to a file or just write or read something to it.
For example:
There are no fopen
, fgets
, printf
, and fclose
system calls in the Linux kernel, but open
, read
, write
, and close
instead. I think you know that fopen
, fgets
, printf
, and fclose
are defined in the C
standard library. Actually, these functions are just wrappers for the system calls. We do not call system calls directly in our code, but instead use these wrapper functions from the standard library. The main reason of this is simple: a system call must be performed quickly, very quickly. As a system call must be quick, it must be small. The standard library takes responsibility to perform system calls with the correct parameters and makes different checks before it will call the given system call. Let's compile our program with the following command:
and examine it with the ltrace util:
The ltrace
util displays a set of userspace calls of a program. The fopen
function opens the given text file, the fgets
function reads file content to the buf
buffer, the puts
function prints the buffer to stdout
, and the fclose
function closes the file given by the file descriptor. And as I already wrote, all of these functions call an appropriate system call. For example, puts
calls the write
system call inside, we can see it if we will add -S
option to the ltrace
program:
Yes, system calls are ubiquitous. Each program needs to open/write/read files and network connections, allocate memory, and many other things that can be provided only by the kernel. The proc file system contains special files in a format: /proc/${pid}/syscall
that exposes the system call number and argument registers for the system call currently being executed by the process. For example, pid 1 is systemd for me:
the system call with number - 232
which is epoll_wait system call that waits for an I/O event on an epoll file descriptor. Or for example emacs
editor where I'm writing this part:
the system call with the number 270
which is sys_pselect6 system call that allows emacs
to monitor multiple file descriptors.
Now we know a little about system call, what is it and why we need in it. So let's look at the write
system call that our program used.
Implementation of write system call
Let's look at the implementation of this system call directly in the source code of the Linux kernel. As we already know, the write
system call is defined in the fs/read_write.c source code file and looks like this:
First of all, the SYSCALL_DEFINE3
macro is defined in the include/linux/syscalls.h header file and expands to the definition of the sys_name(...)
function. Let's look at this macro:
As we can see the SYSCALL_DEFINE3
macro takes name
parameter which will represent name of a system call and variadic number of parameters. This macro just expands to the SYSCALL_DEFINEx
macro that takes the number of the parameters the given system call, the _##name
stub for the future name of the system call (more about tokens concatenation with the ##
you can read in the documentation of gcc). Next we can see the SYSCALL_DEFINEx
macro. This macro expands to the two following macros:
SYSCALL_METADATA
;__SYSCALL_DEFINEx
.
Implementation of the first macro SYSCALL_METADATA
depends on the CONFIG_FTRACE_SYSCALLS
kernel configuration option. As we can understand from the name of this option, it allows to enable tracer to catch the syscall entry and exit events. If this kernel configuration option is enabled, the SYSCALL_METADATA
macro executes initialization of the syscall_metadata
structure that defined in the include/trace/syscall.h header file and contains different useful fields as name of a system call, number of a system call in the system call table, number of parameters of a system call, list of parameter types and etc:
If the CONFIG_FTRACE_SYSCALLS
kernel option is not enabled during kernel configuration, the SYSCALL_METADATA
macro expands to an empty string:
The second macro __SYSCALL_DEFINEx
expands to the definition of the five following functions:
The first sys##name
is definition of the syscall handler function with the given name - sys_system_call_name
. The __SC_DECL
macro takes the __VA_ARGS__
and combines call input parameter system type and the parameter name, because the macro definition is unable to determine the parameter types. And the __MAP
macro applies __SC_DECL
macro to the __VA_ARGS__
arguments. The other functions that are generated by the __SYSCALL_DEFINEx
macro are need to protect from the CVE-2009-0029 and we will not dive into details about this here. Ok, as result of the SYSCALL_DEFINE3
macro, we will have:
Now we know a little about the system call's definition and we can go back to the implementation of the write
system call. Let's look on the implementation of this system call again:
As we already know and can see from the code, it takes three arguments:
fd
- file descriptor;buf
- buffer to write;count
- length of buffer to write.
and writes data from a buffer declared by the user to a given device or a file. Note that the second parameter buf
, defined with the __user
attribute. The main purpose of this attribute is for checking the Linux kernel code with the sparse util. It is defined in the include/linux/compiler.h header file and depends on the __CHECKER__
definition in the Linux kernel. That's all about useful meta-information related to our sys_write
system call, let's try to understand how this system call is implemented. As we can see it starts from the definition of the f
structure that has fd
structure type that represents file descriptor in the Linux kernel and we put the result of the call of the fdget_pos
function. The fdget_pos
function defined in the same source code file and just expands the call of the __to_fd
function:
The main purpose of the fdget_pos
is to convert the given file descriptor which is just a number to the fd
structure. Through the long chain of function calls, the fdget_pos
function gets the file descriptor table of the current process, current->files
, and tries to find a corresponding file descriptor number there. As we got the fd
structure for the given file descriptor number, we check it and return if it does not exist. We get the current position in the file with the call of the file_pos_read
function that just returns f_pos
field of our file:
and calls the vfs_write
function. The vfs_write
function defined in the fs/read_write.c source code file and does the work for us - writes given buffer to the given file starting from the given position. We will not dive into details about the vfs_write
function, because this function is weakly related to the system call
concept but mostly about Virtual file system concept which we will see in another chapter. After the vfs_write
has finished its work, we check the result and if it was finished successfully we change the position in the file with the file_pos_write
function:
that just updates f_pos
with the given position in the given file:
At the end of the our write
system call handler, we can see the call of the following function:
unlocks the f_pos_lock
mutex that protects file position during concurrent writes from threads that share file descriptor.
That's all.
We have seen the partial implementation of one system call provided by the Linux kernel. Of course we have missed some parts in the implementation of the write
system call, because as I mentioned above, we will see only system calls related stuff in this chapter and will not see other stuff related to other subsystems, such as Virtual file system.
Conclusion
This concludes the first part covering system call concepts in the Linux kernel. We have covered the theory of system calls so far and in the next part we will continue to dive into this topic, touching Linux kernel code related to system calls.
If you have questions or suggestions, feel free to ping me in twitter 0xAX, drop me email or just create issue.
Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please send me PR to linux-insides.
Links
Last updated